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In some regression problems we observe a “response” Yti to level t of a “treatment” applied to an individual with level Xi of a given
characteristic, where it has been established that response is monotone increasing in the level of the treatment. A related problem arises
when estimating conditional distributions, where the raw data are typically independent and identically distributed pairs .Xi ;Zi /, and Yti

denotes the proportion of Zi ’s that do not exceed t . We expect the regression means gt .x/ D E.Yti jXi D x/ to enjoy the same order relation
as the responses, that is, gt · gs whenever s · t . This requirement is necessary to obtain bona � de conditional distribution functions,
for example. If we estimate gt by passing a linear smoother through each dataset Xt D f.Xi ;Yti / : 1 · i · ng, then the order-preserving
property is guaranteed if and only if the smoother has nonnegative weights. However, in such cases the estimators generally have high levels
of boundary bias. On the other hand, the order-preserving property usually fails for linear estimators with low boundary bias, such as local
linear estimators, or kernel estimators employing boundary kernels. This failure is generally most serious at boundaries of the distribution
of the explanatory variables, and ironically it is often in just those places that estimation is of greatest interest, because responses there
imply constraints on the larger population. In this article we suggest nonlinear, order-invariant estimators for nonparametric regression,
and discuss their properties. The resulting estimators are applied to the estimation of conditional distribution functions at endpoints and
also changepoints. The availability of bona � de distribution function estimators at endpoints also enables the computation of changepoint
diagnostics that are based on differences in a suitable norm between two estimated conditional distribution functions, obtained from data
that fall into one-sided bins.

KEY WORDS: Bias reduction; Boundary effect; Changepoint; Endpoint; Linear methods; Local linear estimator; Monotonicity;
Nadaraya–Watson estimator; Prediction.

1. INTRODUCTION

1.1 Regression Problems Requiring
Order-Preserving Solutions

Suppose we observe a “response,” Yt i , to level t of a “treat-
ment” applied to an individual with level Xi of a given charac-
teristic, where it has been established that response is monotone
across the range of the treatment. For instance, Yt i might rep-
resent the height at age t years of the ith child in a growth
study, where the child’s mother’s height was Xi units. We ex-
pect the regression means, E.Yt ijXi D x/, to be monotone in t

for � xed x , but monotonicityof the estimators is not assured by
conventional nonparametric regression smoothers. Dif� culties
with monotonicity can be particularly acute toward the ends
of the design interval. In many applications it is on just those
places that the majority of interest centers.

A major motivating example to consider in this setting is
the nonparametric estimation of a conditionaldistribution func-
tion. This problem is of interest in its own right, but also has
applications to the estimation of conditional density functions
and quantile functions, which usually are derived from a suit-
able conditionaldistribution function estimate. Suppose we ob-
serve a sequence of independentand identicallydistributeddata
pairs .Xi ;Zi/, for 1 · i · n, and wish to construct an estimator
bF.¢jx/ of the conditionaldistribution function F .tjx/ ´ P .Z ·
tjX D x/. This problem admits a simple solution in terms of
nonparametricregression, because if we de� ne Yt i D I .Zi · t/,
then F .tjx/ equals the mean of Yt i given Xi D x . We would, of
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course, require bF .tjx/ to be a bona � de distribution functiones-
timate, that is, to be monotone increasing in t , but this property
is not guaranteed by passing conventionalregression smoothers
through the dataset X t D f.Xi;Yt i/ : 1 · i · ng.

Estimating a conditional distribution function at a boundary
or endpoint of the support of the covariates is of special in-
terest for two reasons. First, we may wish to construct predic-
tion intervals for a new observation that will be made right at
the boundary of the current domain of the covariate, as is of-
ten the case when observations are made sequentially involv-
ing regular small increments of the covariate, such as in quality
control or environmentalapplications.Such prediction intervals
are conveniently based on estimated conditional distributions.
Second, for the detection and estimation of changepoints that
may involve changes in features of the conditional distribution
that are more general than just mean changes, the estimation
of bona � de conditionaldistribution functions at endpointswill
provide an essential tool. Differences in a suitable metric be-
tween estimated left- and right-sided conditional distribution
functions, based on one-sided windows placed around an as-
sumed changepoint location and taken as a function of this as-
sumed location, provide changepointdiagnostics.

This article addresses this problem by introducing the more
general perspective of order-preserving nonparametric regres-
sion. Speci� cally, we address sequences of datasets X t D
f.Xi ;Yt i/ : 1 · i · ng, for t 2 T , where the explanatory vari-
ables Xi are common to each X t , and T denotes an interval
that might be either bounded or unbounded, either discrete or
in the continuum. The pairs .Xi ;Yt i/ may often be regarded as
observations of a generic .X;Yt /, say. The Yt i ’s are ordered,
in the sense that, for each i , Ysi · Yt i whenever s · t . There-
fore, we expect the regression means gt .x/ D E.Yt jX D x/ to
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be ordered: gs .x/ · gt .x/ whenever s · t and x is in the sup-
port interval I of the distribution of X. We wish to construct a
sequence of estimators f Ogt : t 2 T g of the set of functions fgt :
t 2 T g, which enjoys the same ordering property. If it does,
then we say the estimators are order preserving on I . We shall
suggest order-preserving regression smoothers with relatively
low bias, particularly at the extremities of the design interval,
and describe their properties.

1.2 Existing Order-Preserving Methods

Quotient methods for nonparametricregression, for example,
the Nadaraya–Watson estimator, are order preserving if based
on nonnegativekernel weights. This follows from the fact that
such techniques (a) are linear in the response variables Yi and
(b) have the positivity property; that is, whenever the response
variables are all nonnegative, the estimator itself is nonnega-
tive. More generally, a linear estimator is order preserving if
and only if it has the positivity property.

Several recent examples of quotient methods are based on
the Nadaraya–Watson estimator. They include the identity-
reproducingregression or mass-centered smoothing techniques,
discussed by Müller and Song (1993) and Mammen and Mar-
ron (1997); the biased bootstrap form of the Nadaraya–Watson
estimator (Hall and Presnell 1999); and some, although not all,
data-sharpening techniques (Choi, Hall, and Rousson 2000).
However, all these methods suffer excessive bias at the bound-
aries. Speci� cally, althoughthey have O.h2/ bias in the interior,
where h denotes bandwidth, this rate deteriorates to O.h/ near
a boundary.

Convolution-typeestimators, such as those of Gasser–Müller
and Priestley–Chao type (see, for example, Wand and Jones
1995, p. 130ff; Simonoff 1996, p. 138), are also order preserv-
ing, as long as positivekernelweights are used, because they are
linear and have the positivity property. For both convolution-
type and quotient-typeestimators, the positivity property holds
if the kernels used are nonnegative.On the other hand, local lin-
ear methods, which are well known for their high level of resis-
tance to boundary effects (see, for example, Fan 1992; Fan and
Gijbels 1992), lack the positivityproperty and are not order pre-
serving, even while employing a nonnegative kernel or weight
function. Moreover, they suffer this de� ciency even in the as-
ymptotic limit—in an important class of problems the probabil-
ity that a local linear estimator, computed for a particular real-
ization, is not order preserving at the boundary converges to 1
as sample size increases; see Section 3.1.

In fact, no linear, kernel-type estimator that enjoys the posi-
tivity property can have better than O.h/ bias at the boundary,
where h denotes the estimator’s bandwidth; see Section 3.1.
Equivalently, no order-preserving kernel-type estimator with
better than O.h/ boundary bias can be linear. Therefore, non-
linear estimators must be used if we are to obtain an order-
preserving estimator with O.h2/ bias across the full design
interval. In particular, none of the estimators discussed previ-
ously is suitable. This also includes traditional methods for al-
leviating edge effect problems based on boundary kernels, as
it can be easily shown that suitable boundary kernel functions
cannot be restricted to be nonnegative.

1.3 The Relevance of Conditional Distribution Function
Estimation at Boundaries

As mentioned previously, a major motivation for order-
preserving regression is the desire to obtain bona � de distribu-
tion function estimates (see, for example, Hall, Wolff, and Yao
1999; Peracchi 2002, for some recent work on this problem).
Such estimates are important for a variety of purposes, one of
which is estimation of conditional density functions that are
implicitly derived via conditional distribution functions. An-
other application is the nonparametric estimation of conditional
quantile functions as inverses of conditional distribution func-
tions, a problem that has been studied by Bhattacharya and
Gangopadhyay (1990) and Yu and Jones (1998), among oth-
ers. There is particular motivation for estimating bona � de con-
ditional distribution functions exactly at those covariate levels
where the problem is hardest, namely, at or near endpoints and
changepointsde� ned in terms of the covariate level.

2. METHODOLOGY

Although it is clear from the discussion in Section 1 that
order-preserving methods with good boundary bias properties
are necessarily nonlinear, the linearity of techniques such as
those of Nadaraya and Watson, Gasser and Müller, and Priestley
and Chao is partly responsible for their order-preserving prop-
erty. Therefore, we seek a method that combines the best of both
worlds, that is, that corrects for boundary bias without losing
the important features of linearity. This leads us to suggest that
nonlinearmethods be used to impute ordered “pseudo-data” on
the sides of boundaries away from the real dataset and that then
relatively conventional linear methods be applied to the new,
larger dataset, to produce an estimator that is order preserving.

Data imputationby re� ection in the boundaries, much as dis-
cussed by Schuster (1985), Silverman (1986, p. 30f), and Cline
and Hart (1991) in the context of density estimation, leads di-
rectly to an order-preserving estimator. It enjoys only O.h/

bias at the boundaries, however. Hall and Wehrly (1991) sug-
gested an alternative data imputation method, which involves
re� ection in points on the boundaries, but although it has good
boundarybias properties it fails to be order preserving. We pro-
pose an order-preserving version of the Hall–Wehrly technique,
which attains the desirable O.h2/ boundary bias rate, as fol-
lows.

Assume we have an ordered sequence of datasets X t , as sug-
gested in Section 1.1; in particular, Ysi · Yt i whenever s · t .
Suppose the distribution of the explanatoryvariables Xi is sup-
ported on an interval I D [a;b], which we call the design in-
terval. Let OgLL;t , for t 2 T , denote a local linear estimator of
gt computed from data in X t . It is de� ned by minimizing the
weighted sum of squares

nX

iD1

K

³
x ¡ Xi

h

´£
Yt i ¡

©
¯0 C ¯1.x ¡ Xi/

ª¤2
;

with respect to ¯0;¯1 and setting OgLL;t D Ō0. Here K is a kernel
function and h the sequence of bandwidths.

For x D a or x D b consider the sequence U .x/ D f OgLL;t.x/ :
t 2 T g. Ideally, the elements of each U .x/ would be monotone
increasing in t , but this is unlikely to be the case for the end-
points x D a; b. We wish to “monotonize” OgLL;t.x/ at just
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Figure 1. Filling in the “Valleys” of the Initial Distribution Function Estimate bFLL( ¢ jb) Obtained by Local Linear Fitting at a Right Endpoint b (solid
line) Results in a Monotone Increasing Estimate eF(t jb) (thin line) as t Increases (simulated example with n D 100 data).

those places. There are several ways of achieving this end;
we consider one particular method later, where we denote the
monotonized version of OgLL;t.x/ (monotone in the sense of a
function of t for � xed x) by Qgt .x/. In effect, it � lls in the val-
leys of OgLL;t.x/ by horizontal lines. For the special case of es-
timating a conditional distribution function, this is indicated
in Figure 1 for an example dataset. The initial nonmonotone
(in t) estimate bFLL.¢; x/ of the conditionaldistribution function
is monotonized to produce the version bF .¢jx/.

For simplicity, we assume that T is closed and bounded, al-
though our methods lead to a more general de� nition of Qgt . The
prescription given later is descriptive, but can readily be given
in mathematically rigorous terms. Let V .x/ be the set of points
t such that OgLL;u.x/ · OgLL;t .x/ for all u · t and also such
that, on passing to a point in T immediately to the right of t ,
OgLL;t .x/ turns strictly downward, rather than taking a nonde-
creasing path. In practical applications V .x/ would be � nite, so
we write it in strictly increasing order as V .x/ D fs1; : : : ; sN g.
For each s 2 V , let u.s/ be the point t 2 T at which OgLL;t.x/

� rst recovers the same level as, or a greater level than, OgLL;s.x/.
Put ti D u.si/ and de� ne Qgt .x/ D OgLL;si

.x/ if si · t < ti for
some i , and Qgt.x/ D OgLL;t.x/ otherwise. (De� nitions near the
boundary are handled in the obvious way; see Fig. 1.) Then
Qgt .x/ is nondecreasing in t 2 T .

For each t 2 T , we then compute pseudo-data by project-
ing the points in X t through both Qgt .a/ and Qgt .b/; see Figure 2
for the distribution function case. This produces a new dataset
X 0

t D f.X0
i ;Y 0

t i/ : 1 · i · 3ng, say, where, without loss of gen-
erality, X1 · ¢ ¢ ¢ · X3n. Thus, the middle n pairs .X0

i ;Y 0
t i/ are

the original data, the � rst n are pseudo-data on the left side of

the lower boundary, and the last n are pseudo-data on the right
side of the upper boundary.

We compute Ogt by � tting a kernel-type linear estimator
through X 0

t , assuming that the estimator has the form

Ogt .x/ D
3nX

iD1

wi.x/Y 0
t i; (2.1)

where, for a constant C > 0, the weights satisfy:

for 1 · i · 3n; wi .¢/ ¸ 0

and (2.2)

wi.x/ D 0 whenever jx ¡ X0
i j > Ch;

for 1 · i · n and 0 · x · Ch; wn¡iC1.a C x/ · wnCi.a C x/

and (2.3)

w2n¡iC1.b ¡ x/ · w2nCi.b ¡ x/.

Condition (2.2) is, of course, satis� ed by kernel-type esti-
mators based on nonnegative kernels supported in the interval
[¡C;C]. Condition (2.3) is also typically satis� ed. To appre-
ciate why, observe that, by de� nition of our re� ection method,
the set of design points of the pseudo-data generated on the left
side of a (respectively,on the right side of b) is the re� ection in
x D a (respectively, in x D b) of the set of design points of the
real data. When Ogt is a Nadaraya–Watson estimator, the choice
we make in the illustrating examples, the weight wi.x/ equals
the ratio of a single kernel weight Ki.x/ D Kf.x ¡ Xi/=hg to
the sum

P
j Kj .x/. If K is symmetric, unimodal,and supported

on [¡C;C], then, provided h · .b ¡ a/=.2C/, this construction
implies that at a C x , with 0 · x · Ch, the denominators of
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Figure 2. Generation of Pseudo-Data X 0
t by Re� ecting Original Data Xt (con�ned to domain [a; b] D [0;1]) at the Points (0; eF(t j0)) and (1; eF(t j1)).

The data (Xi ;Yti ) illustrated here were simulated, using sample size n D 20 and a single value for t. The original data (±) are indicator variables
Yti D I(Zi · t), as used in the application for estimating a conditional distribution function. They are augmented by pseudo-data to the left (¤) and to
the right (4).

wn¡iC1.¢/ and wnCi.¢/ are identical, but (by virtue of the uni-
modality) the numerator of the latter is not less than that of the
former. This property, along with its counterpart for the other
boundary, implies (2.3).

This last smoothing step, when implemented with a Nada-
raya–Watson quotient-type kernel estimator, is illustrated for
the conditional distribution function case in Figure 3 for an ex-
ample dataset. The resulting distribution function estimator is
denoted by bF.¢jx/.

The following result, proved in Section 3, demonstrates that
Ogt has the required properties.

Theorem 2.1. If Ogt is de� ned by (2.1), if the weights satisfy
(2.2) and (2.3), and if 0 < h · 1

2.b ¡ a/, then Ogt is order pre-
serving on I .

3. THEORETICAL PROPERTIES

3.1 Problems Suffered by Linear Estimators

Let Og.x/ D
P

i wi .x/Yi be a linear estimator of g.x/ D
E.Y jX D x/, computed from the independent and identically
distributed data X D f.Xi ;Yi/ : 1 · i · ng. We shall say that Og
is of kernel type with bandwidth h if the wi ’s are functionals of
X1; : : : ;Xn satisfying, for constants C1;C2;C3 > 0, for all x in
the design interval, and for all suf� ciently large n,

wi.x/ D 0 whenever jx ¡ Xi j > C1h;

and
X

i:jx¡Xi j>C2h

wi.x/ ¸ C3 :

(3.1)

Conventional kernel estimators, such as those of Nadaraya–
Watson, Gasser–Müller, or Priestley–Chao type, satisfy this
conditionwith probability1 when the kernel is nonnegativeand
compactly supported,when the design density is bounded away
from 0 on the design interval, and when the bandwidth satis� es
the mild conditionsh D h.n/ ! 0 and nh=.logn/1=2 ! 1.

Assume the design interval is [a;b]. Our � rst result shows,
in effect, that no kernel-type linear estimator with the positivity
property can have better than O.h/ bias at the boundary. Be-
cause a linear estimator is order preserving if and only if it has
the positivity property, then linear, order-preserving estimators
fail to have good bias properties.

Theorem 3.1. If Og is a kernel-type linear estimator with the
positivity property, and if in the case where g.x/ ´ C (a con-
stant) we have

E
©

Og.a/jX1; : : : ; Xn

ª
D C C op.h/ (3.2)

as h ! 0, then whenever g has a continuousderivativeon [a;b]
and g0.a/ 6D 0, there exists ² > 0 such that the probability that

E
©

Og.a/jX1; : : : ; Xn

ª
¡ g.a/

> ²h

converges to 1 as n ! 1.

In general, local linear estimators fail to have the positivity
property, although it might be thought that this is only a rare
defect—for large samples local linear estimators of regression
means might be expected to be order-preserving except in un-
usual cases. Unfortunately, this is not true. We shall show that,
with probability tending to 1, local linear methods fail to be
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Figure 3. Comparison of Monotonized Intermediate Conditional Distribution Function Estimate eF( ¢ ;x) (solid) and the Final Estimate bF( ¢ ;x)
(dashed), Constructed From the Pseudo-data X 0

t Obtained in the Re�ection Step. Here, for simulated data with n D 100, h D :2 when estimating at
the point x D :95 near the right endpoint at b D 1.

order preserving in the important case of distribution function
estimation. This is only one member of a large class of exam-
ples for which local linear methods fail to be order preserving.

The problems arise because of the way local linear methods
deal with edge effects. On the other hand, if the design density
is supported on a compact interval I and bounded away from 0
there, then, with probability tending to 1 as n ! 1, local lin-
ear estimators have the positivity property when applied to data
pairs whose design component is con� ned to a compact subin-
terval of I that does not include the endpoints of I . Therefore,
local linear estimators seldom fail to be order preserving in the
interior of I . We compile some assumptions as follows.

C0. Let .Xi ;Zi/, for 1 · i · n, be a sequence of inde-
pendent and identically distributed random 2-vectors,
with the marginal distribution of X being supported on
an interval I D [a; b], and the marginal density con-
tinuous and nonvanishing there. Construct an estimator
bFLL.tjx/ of F .tjx/ D P .Z · t jX D x/ by passing a lo-
cal linear smoother through the pairs .Xi ;Yt i/, where
Yt i D I .Zi · t/, using a bounded,compactly supported,
symmetric, piecewise continuous,nonnegativekernel K

and a bandwidth h. Assume that h D h.n/ ! 0 and
nh ! 1 as n ! 1, which are minimum conditionsfor
weak consistency.We also require that, for x D a and b,
F .¢jx/ be nonsingular.

Theorem 3.2. Under conditions C0 and with probability
tending to 1 as n ! 1, there exist intervals [a; Ox1] and [ Ox2; b],
with Ox1; Ox2 stochastic and a < Ox1 < Ox2 < b, such that whenever
x is an element of either interval, bFLL.¢jx/ is not monotonenon-
decreasing.

It may be proved, under slightly more restrictive conditions,
that the lengths of the intervals [a; Ox1] and [ Ox2; b] are both
Op.h/ and that they may be chosen so that, with probabil-
ity tending to 1, their lengths exceed ²h, provided ² > 0 is
taken suf� ciently small (but � xed). Furthermore, the problems
evinced by Theorem 3.2 are not overcome by modifying local
linear estimators in conventional ways. For example, incorpo-
rating a ridge parameter does not alleviate the dif� culties, be-
cause it alters only the denominators of the smoothing weights
used to construct local linear estimators; the nonpositivityof lo-
cal linear methods, which is the root cause of the problems, is
caused by the numerators of the smoothing weights.

3.2 Properties of the Order-Preserving Estimator Ogt

For the sake of de� niteness, we shall take Ogt , de� ned in Sec-
tion 2 and computed from the data and pseudo-data, to be a stan-
dard Nadaraya–Watson estimator, although our results apply to
other estimator types as well. The Nadaraya–Watson kernel es-
timator for gt.x/, obtained from the pseudo-data .X0

i;Y 0
t i/, is

Ogt.x/ D
3nX

iD1

K

³
x ¡ X0

i

h

´
Y 0

t i

¿ 3nX

iD1

K

³
x ¡ X0

i

h

´
:

With the aim of obtaining useful upper bounds, we compile the
following assumptions:

C1. For each t the 2-vectors .Xi ;Yt i/, for 1 · i < 1, are
independent and identically distributed; the common
distribution of the independent random variables Xi is
continuouson a compact interval I , has a density that is
bounded away from 0 and has two bounded derivatives
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there, and vanishes off I ; for some ² > 0,

sup
t2T ;juj·²

E
±
exp

£
u

©
Yt i ¡ E.Yt i jXi/

ª¤²
< 1I (3.3)

the regression mean functions gt .x/ D E.Yt i jXi D x/,
for t 2 T , and their � rst two derivatives, are bounded
uniformly with respect to both x 2 I and t 2 T ; the
bandwidths h1 used to construct the local linear estima-
tor OgLL;t from the dataset X t , and h2 used to construct
the Nadaraya–Watson estimator Ogt from X 0

t , both sat-
isfy n²hj ! 0 and n1¡²hj ! 1 as n ! 1 for some
² > 0; the kernels used for either estimator are sym-
metric, compactly supported, nonnegative, and Hölder
continuouson the real line; the kernel used for Ogt is uni-
modal; and the number of elements of T D T .n/ in-
creases no more than polynomially fast in n.

Theorem 3.3. Assume conditions C1. Then, with probabil-
ity 1,

sup
t2T

sup
x2X

Ogt.x/ ¡ gt.x/
D O

©
.nh/¡1=2.logn/1=2 C h2ª

: (3.4)

The rate of convergence asserted at (3.4) is the best possible
for even a single t and for distributionssatisfying conditionsC1.
In fact, it may be proved that in the case of a single regression,
and under additional regularity conditions,

sup
x2X

Ogt .x/ ¡ E
©

Ogt .x/jX1; : : : ;Xn

ª

D C
©
1 C o.1/

ª
.nh/¡1=2.logn/1=2,

with probability1, where C > 0 is a constant; and Ef Ogt .x/jX1;

: : : ;Xng D h2°t .x/ C o.h2/, with probability 1, where °t is a
nonvanishing function. Therefore, the convergence rate at (3.4)
is also best possible when it is asserted uniformly in t . We note
that the � nal assumption in conditions C1, about the rate at
which the number of elements (size) of T .n/ increases, is usu-
ally adequate even when T is in� nite, and also that there is no
dif� culty extending our methods and results to the � xed design
case where X1; : : : ; Xn are nonstochasticand spaced according
to a smooth positive design density.

3.3 Application to Distribution Function Estimation

Depending on the model that generates the ordered
datasets X t , alternative methods can be used to derive rates
of convergence of Ogt to gt in integral metrics, not requiring the
logarithmic factor on the right side of (3.4). For instance, this is
the case for the distribution function estimation problem.

In that context we observe independent and identically
distributed data pairs .X1;Z1/; : : : ; .Xn;Zn/; we put Yt i D
I .Zi · t/, and F .tjx/ D P .Z · t jX D x/; and we take bF .tjx/

to be the estimator obtained by applying our order-preserving
smoother to the datasets X t D f.Xi ;Yt i/ : 1 · i · ng, for
t 2 .¡1; 1/. Consider the following assumptions.

C2. The distribution of .X; Z/ is compactly supported; the
distribution of X is continuous on a compact interval
I, has a density that is bounded away from 0 and has
two bounded derivatives there, and vanishes off I ; the
functions .@=@t/j F.tjx/, for j D 0; 1;2, are bounded
uniformly with respect to both x 2 I and t 2 T ; the

bandwidths h1 used to construct the local linear estima-
tor OgLL;t from the dataset X t , and h2 used to construct
the Nadaraya–Watson estimator Ogt from X 0

t , both sat-
isfy n²hj ! 0 and n1¡²hj ! 1 as n ! 1 for some
² > 0; the kernels used for either estimator are symmet-
ric, compactly supported, nonnegative,and Hölder con-
tinuous on the real line; and the kernel used for Ogt is
unimodal.

Theorem 3.4. Assume conditions C2. Then, with probabil-
ity 1,

ZZ ©bF .tjx/ ¡ F .tjx/
ª2

dt dx D O
©
.nh/¡1 C h4ª

:

Theorem 3.4 implies a uniform convergence rate for esti-
mators of linear functionals of F .tj¢/. For example, given a
constant B > 0, let C .B/ denote the class of differentiable
functions Ã satisfying supt jÃ 0.t/j · B , and de� ne 9.xjÃ/ D
EfÃ.Z/jX D xg. Put b9.xjÃ/ D

R
Ã.t/dt

bF .tjx/. Applying
Theorem 3.4 through an integration by parts and an application
of Hölder’s inequality,we obtain that, with probability 1,

sup
Ã2C.B/

Z ©b9.xjÃ/ ¡ 9.xjÃ/
ª2

dx D O
©
.nh/¡1 C h4ª

:

Another case of interest concerns the estimation of con-
ditional quantiles. Assume that, for 0 · q < r · 1, the in-
verse F ¡1.pjx/ of F .¢jx/ exists for p 2 [q; r] and that
infp2[q;r ] infx2X F 0.F ¡1.p//jx/ > 0: Then, choosing for ex-
ample as estimates of conditional quantiles

bF ¡1.pjx/ D 1
2

h
inf
t 2T

©
t : bF.tjx/ ¸ p

ª
C sup

t 2T

©
t : bF .tjx/ < p

ªi
;

the result (3.4), applied to conditionaldistributionfunctionsand
combined with bounds for the difference of inverses of two
functions, leads to, with probability 1,

sup
p2[q;r ]

sup
x2X

bF ¡1.pjx/ ¡ F ¡1.pjx/


D O
©
.nh/¡1=2.logn/1=2 C h2

ª
.

4. ILLUSTRATIONS OF ORDER-PRESERVING
NONPARAMETRIC REGRESSION

We demonstrate here some simulation- and application-
based examples that focus on the case of conditional distri-
bution estimation. Applying the three-step order-preserving
nonparametric regression procedure described in Section 2 to
data .Xi; Yt i/ D .Xi; I .Zi · t//; for i D 1; : : : ; n, we � rst ob-
tain the augmented pseudo-data, .X0

i ;Y 0
t i/; for i D 1; : : : ;3n;

and then the bona � de conditional distribution function estima-
tor

bF .tjx/ D
P3n

iD1 K..x ¡ X0
i /=h/Y 0

t iP3n
iD1 K..x ¡ X0

i/=h/
: (4.1)

In the following we choose the kernel function K to be
the Bartlett–Parzen–Epanechnikovkernel with support [¡1;1],
K.u/ D 3

4 .1 ¡ u2/I .¡1 · u · 1/. The transition from the ini-
tial nonmonotone conditional distribution function estimator
bFLL.¢jb/ to the monotonized version eF .tjb/ is illustrated in
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Figure 1. Generation of the pseudo-data and the � nal estimate
(4.1) is depicted in Figures 2 and 3. If one desires an esti-
mate of the conditionaldistribution function that is smooth in t ,
one could use (4.1) as a starting point and then integrate the
conditionaldensity kernel estimator Of .tjx/ D

R Qh¡1 QK. Qh¡1.t ¡
u//d bF.ujx/ (constructed with kernel QK and bandwidth Qh) to
obtain the smooth estimate eF .tjx/ D

R t
¡1

Of .vjx/dv: The pre-
ceding formula demonstrates that nonparametric estimation of
a conditional density requires a bona � de nonnegative condi-
tional empirical measure, which is only guaranteed if an order-
preserving procedure is used.

4.1 Application to Changepoint Estimation and
Conditional Distribution Estimation
Near Changepoints

We illustrate the use of conditional distribution and quan-
tile function estimation near and at endpoints, through an ap-
plication to the estimation of changepoint locations and of
conditional distribution and quantile functions near change-
points. We consider here a small number of isolated change-
point locations µ , at which the map from the domain of the
covariate [a;b] to the space of distribution functions, x 7!
F .¢jx/, has a discontinuity, whereas at all other covariate val-
ues x it is continuous. Continuity is de� ned with respect to a
suitable metric in the space of distribution functions (Carlstein
1988).

Consider a covariate level x0 in the interior of [a;b], and
denote the conditional distributions (pertaining to the L2 met-
ric) to the left and right of x0 as F¡.¢jx0/ D limx"x0 F .¢jx/

and FC.¢jx0/ D limx#x0 F .¢jx/, respectively. With D.F¡.¢jx0/,
FC.¢jx0// D

R
fFC.tjx0/ ¡ F¡.tjx0/g2dt , one has D.F¡.¢jx0/,

FC.¢jx0// D 0 if the mapping x 7! F .¢jx/ is continuous at
x D x0, and D.F¡.¢jx0/; FC.¢jx0// > 0 if a jump occurs at x0.

We may estimate F§.¢jx0/ using the order-preserving esti-
mators bF§.¢jx0/, by using only the data falling into [a;x0] when
computing bF¡.¢jx0/, with re� ection occurring at the endpoints
a and x0; and analogously for bFC.¢jx0/. In both cases, x0 plays
the role of an endpoint.

Using the changepointdetection function 1.µ/ D
R

fbFC.tjµ/

¡ bF¡.tjµ/g2dt; the corresponding changepoint location esti-
mate is Oµ D arg supµ 1.µ/. If more than one changepoint is to
be estimated, this process is simply repeated, by removing the
previously estimated locations plus appropriate neighborhoods
around them from the set of potential changepoint locations
over which a maximum of 1.¢/ is sought.

Once the estimated changepoint location Oµ has been deter-
mined, we set x0 D Oµ and obtain order-preserving distribution
function estimates using only data where the covariate values
fall into the intervals [a; Oµ] on the left of the estimated change-
point or into the intervals [ Oµ; b] on the right of the estimated
changepoint, following exactly the same procedures as for an
assumed changepointat x0.

4.2 Simulated Example for Change in Variance

We illustrate these procedures � rst with a simulated dataset.
Here

Zi D g.Xi /Cei ; i D 1; : : : ; n; Xi » U.0;1/; ei » N.0; ¾ 2/;

and the ei ’s and Xi ’s are totally independent. Choosing n D
1; 000, we assume that a change in the variance occurs at
x D :7, with g.x/ D ex and var.ejx/ D ¾ 2 D :2; x < :7; whereas
var.ejx/ D ¾ 2 D 1; x > :7: The bandwidth was chosen as
h D :2.

We obtain the changepointdetection function 1.¢/ as shown
in Figure 4. A single changepoint location emerges as the

Figure 4. Changepoint Detection Function 1( ¢ ) for Simulated Variance Change Data (n D 1,000, h D :2, � xed design case). The peak selected
for the changepoint estimate is highlighted.
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Figure 5. Estimated Conditional Quantile Functions for the Variance Change Data (h D :2, n D 1,000). Indicated are the :1, :5, and :9 estimated
(solid) and true (dashed) quantile curves. Estimated curves are adapted to the estimated changepoint location.

maximizing argument, and the conditionaldistribution function
estimates adapted to this estimated changepointlocation are in-
dicated by the .1, .5, and .9 estimated quantiles in Figure 5.
The change in variance is very clearly re� ected in these esti-
mates. Figure 6 allows comparison of the two conditional dis-
tribution function estimates bF¡.¢j Oµ/ and bFC.¢j Oµ/ right at the
endpoint Oµ , with the corresponding normal underlying distri-
bution functions F¡.¢jµ/ and FC.¢jµ/: Agreement is seen to
be quite good, con� rming that order-preserving estimation of
conditionaldistributionfunctionsperforms well at both change-
points and endpoints.

Note that the characteristic of the distribution function that is
subject to a sudden change is unknown;that is, it is not assumed
to be known in this example that it is a jump in the variance.
Commonly used changepoint detection methods based on dif-
ferences between regular one-sided local linear � ts are focusing
on mean changes and will not detect this change, because the
mean continuesto change smoothly across the point of disconti-
nuity in the variance. One-sided bona � de distribution function
estimates at endpoints then allow one to de� ne a general detec-
tion function 1 based on a suitable distance measure between
left- and right-sided distribution function estimates.

4.3 Application to Changepoints in DNA Sequences

The analysis of the frequencies of basepairs in DNA se-
quences has been studied by many authors; see, for example,
Braun and Müller (1998), Braun, Braun, and Müller (2000),
Chechetkin and Lobzin (1998), and Liö, Politi, Ruffo, and

Buiatti (1996) for biological relevance, methodology, and fur-
ther references. We use the sequence of Saccharomyces cere-
visiae III, a chromosome of brewer’s yeast, to illustrate order-
preserving conditional distribution function estimation in the
presence of changepoints.

The data consist of n D 526 relative frequencies (obtained by
binning) of the occurrence of guanine and cytosine (GCC) as a
proportion of all bases (A, C, G, and T). These data are avail-
able from Genbank (http://www.ncbi.nlm.nih.gov/Genbank/).
We assume two changepoints, based on previous analyses of
these data. One could extend existing inference procedures as
in Dümbgen (1991) or Braun et al. (2000) for the existence and
number of changepoints to the more complex situation in this
application.Our analysis proceeds by � rst locating the change-
points with the methods described previously and then con-
structing the order-preserving conditional distribution function
estimates, adapted to the two estimated changepointsas shown
via the quantileestimates in Figure 7. Interesting mean and vari-
ance patterns become visible, which may motivate further, de-
tailed analyses.

5. THEORETICAL ARGUMENTS

5.1 Proof of Theorem 2.1

Recall that X 0
t D f.X0

i ;Y 0
t i/ : 1 · i · 3ng, where X1 · ¢ ¢ ¢ ·

X3n . We must establish that if s · t , then, for x 2 I and h ·
1
2 .b ¡ a/,

Ogt .x/ ¡ Ogs .x/ D
3nX

iD1

wi.x/.Y 0
t i ¡ Y 0

si/ ¸ 0: (5.1)

http://www.ncbi.nlm.nih.gov/Genbank/


606 Journal of the American Statistical Association, September 2003

Figure 6. Estimated Conditional Distribution Functions bF¡(t j Oµ) (steep dashed function) and bFC(tj Oµ ) (less steep dashed function) and the True
Gaussian Conditional Distribution Functions F¡(t jµ ) (steep solid function) and FC(tjµ ) (less steep solid function). The distribution function estimates
use only data on left or right side of the estimated changepoint.

Figure 7. Estimated Order-Preserving Conditional Quantile Functions (h D 50 kbp) for the S. cerevisiae III DNA Sequence, Indicated by Esti-
mated :25, :5, and :75 Quantile Curves and Adapted to the Two Estimated Changepoint Locations.
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If n C 1 · i · 2n, then .X0
i ;Y 0

t i/ is one of the original data,
and so, by assumption (see Sec. 2), Y 0

t i ¡ Y 0
si ¸ 0, implying

that the correspondingcontribution to the series in (5.1) is non-
negative. If 1 · i · n, then either Y 0

t i ¡ Y 0
si ¸ 0, in which case

the contribution to (5.1) is nonnegative, or Y 0
t i ¡ Y 0

si < 0. In
the latter case the manner of generation of the pseudo-data im-
plies that there exists an index j , between n C 1 and 2n, such
that X0

j is the same distance to the right of x D a as X0
i is to

the left. Because Qgu.a/ is nondecreasing as a function of u,
jY 0

t i ¡ Y 0
sij · Y 0

tj ¡ Y 0
sj . In view of (2.3), wi.x/ · wj .x/, and

so the net contribution of the ith and j th terms to the series in
(5.1) is nonnegative.The case 2n C 1 · i · 3n may be treated
similarly. The assumption that h · 1

2 .b ¡ a/ implies that no
real data pair needs to be combined in this manner with more
than one pseudo-data pair. Hence, for each negative summand
in the series in (5.1), there is a positive summand that is not less
than the absolute value of the negative summand; and no pos-
itive summand has to be combined with two or more negative
summands in this way. This establishes the inequality at (5.1).

5.2 Proof of Theorem 3.1

Property (3.2) implies that
P

i wi.a/ D 1Cop.h/. Recall that
positivitymeans Og.x/ ¸ 0 whenever each Yi ¸ 0, and so implies
that each wi.x/ ¸ 0. From these results, Taylor expansion, and
both parts of (3.1), we may prove that, when g0.a/ ¸ 0,

Ef Og.a/jX1; : : : ;Xng

D
nX

iD1

wi.a/g.Xi/

D
nX

iD1

wi.a/fg.a/ C .Xi ¡ a/g0.a/g C op.h/

D g.a/ C g 0.a/

nX

iD1

wi.a/.Xi ¡ a/ C op.h/

¸ g.a/ C g0.a/
X

i:jXi¡aj¸C2h

wi.a/.Xi ¡ a/ C op.h/

¸ g.a/ C C2C3hg 0.a/ C op.h/;

which implies the theorem. The case g0.a/ < 0 may be treated
similarly.

5.3 Proof of Theorem 3.2

Without loss of generality, the design interval is [0; b]. We
shall prove that, with probability tending to 1, there exist s < t

such that bF .tj0/ ¡ bF .sj0/ < 0. This result, the continuity of
bF.tjx/ as a function of x , and the symmetry of behavior at ei-
ther end of [0; b] imply Theorem 3.2.

Note � rst that it is possible to choose » > 0 such that
K.»/ > 0 and

A.»/ ´
Z 1

0
y2K.y/dy ¡ »

Z 1

0
yK.y/dy < 0:

Let ± > 0 be so small that K ¸ C > 0 on the interval
[»; » C ±]. Because nh ! 1, with probability tending to 1
as n ! 1, there is at least one Xi 2 [»h; .» C ±/h]. Because
F .¢j0/ is nonsingular, for this i we may choose s < t such that

Zi 2 .s; t/ and no other Zj lies there. (We suppress the depen-
dence of s and t on i .) Then

bF .tj0/ ¡ bF .sj0/ D
S2 ¡ .Xi=h/S1

S2S0 ¡ S2
1

K

³
Xi

h

´
;

where Sk D .nh/¡1 P
i.Xi=h/kK.Xi=h/. Now S2 ¡ .Xi=h/S1

D A.Xi=h/f .0/ C op.1/, and as n ! 1, S2S0 ¡ S2
1 converges

in probability to

f .0/2
µ

1
2

Z 1

0
y2K.y/dy ¡

»Z 1

0
yK.y/ dy

¼ 2¶
> 0;

where f denotes the marginal density of X. Hence, in view
of our choice of Xi , the probability that bF .tj0/ ¡ bF .sj0/ < 0
converges to 1 as n ! 1, as had to be shown.

5.4 Outline Proof of Theorem 3.3

De� ne ¹LL;t .x/ D Ef OgLL;t.x/jX1; : : : ;Xng. Using methods
based on moderate deviations of sums of independent random
variables and, in particular, employing the assumption (3.3) of
a � nite moment generating function, we may show that there
exist C1;C2 > 0 such that, for all suf� ciently large C3 > 0,

sup
t2T

max
xDa;b

P
©OgLL;t.x/ ¡ ¹LL;t .x/

> C3.nh/¡1=2.logn/1=2ª

D O
¡
n¡C1 C3

¢
; (5.2)

sup
t2T

max
xDa;b

P
©
j¹LL;t.x/ ¡ gt.x/j > C2h2ª

D O
¡
n¡C3

¢
:

From these results, the fact that T has only O.nC4 / elements
for some C4 > 0, and the Borel–Cantelli lemma, we may prove
that, with probability 1,

sup
t2T

max
xDa;b

OgLL;t.x/ ¡ gt .x/
D O

©
.nh/¡1=2.logn/1=2 C h2ª

:

The latter property and the de� nition of Qgt imply that, with

»t .x/ D Qgt .x/

and

´ D .nh/¡1=2.logn/1=2 C h2;

(5.3)

we have, with probability 1,

sup
t2T

max
xDa;b

»t.x/ ¡ gt .x/
D O.´/: (5.4)

Assume the kernel used to construct the Nadaraya–Watson
estimator Ogt is supportedon [¡C;C]. Then Ogt restricted to [a C
Ch; b ¡ Ch] does not involve any of the pseudo-data. De� ne
¹t .x/ D Ef Ogt.x/jX1; : : : ; Xng. Using the arguments leading to
(5.2), we may prove that, for constants C1;C2 > 0, we have, for
all suf� ciently large C3 > 0,

sup
t2T

sup
aCCh·x·b¡Ch

P
©Ogt.x/ ¡ ¹t .x/

> C3.nh/¡1=2.logn/1=2ª

D O
¡
n¡C1C3

¢
;

sup
t2T

max
xDa;b

P
©¹t .x/ ¡ gt .x/

> C2h2ª
D O

¡
n¡C3

¢
:

From this result, the fact that the kernel used to construct Ogt is
Hölder continuous, the property that T has only polynomially
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many elements, and the Borel–Cantelli lemma, we may show
that, with probability 1,

sup
t 2T

max
aCCh·x·b¡Ch

Ogt .x/ ¡ gt .x/
D O.´/: (5.5)

Now consider a generalized form of the estimator Ogt.x/ in
which, rather than generating pseudo-data by re� ecting the real
data through points .a; Qgt.a// and .b; Qgt.b//, we re� ect through
.a; »t .a// and .b;»t .b//, where »t .x/ is nondecreasing in t

for x D a; b. Let Og»t ;t denote the resulting version of Ogt . Us-
ing the linearity of Nadaraya–Watson estimators, we may, for
jx ¡ aj · Ch, write Og»t ;t .x/ D Oggt ;t.x/ C f»t.a/ ¡ gt .a/g³t .x/,
where the function ³t does not depend on the choice of »t . Ar-
guments leading to (5.5) may be employed to prove that, with
probability 1,

sup
t2T

sup
jx¡aj·Ch

Oggt ;t.x/ ¡ gt.x/
D O.´/;

sup
t 2T

sup
jx¡aj·Ch

³t.x/
D O.1/:

Making the choice of »t at (5.3) and noting that (5.4) holds for
this selection, we deduce that

sup
t2T

max
jx¡aj·Ch

Ogt .x/ ¡ gt .x/
D O.´/: (5.6)

A similar property holds at the other boundary.Combining that
result with (5.5) and (5.6), we deduce Theorem 3.3.

Derivation of Theorem 3.4 may similarly be based on appli-
cation of the Borel–Cantelli lemma, this time using Markov’s
inequality and moment bounds, as well as techniques from the
proof of Theorem 3.3, to prove that, for some C1 > 0 and all
C2 > 0,

P

µ Z Z ©bF .tjx/ ¡ F .tjx/
ª2

dt dx > C1
©
.nh/¡1 C h4

ª¶

D O
¡
n¡C2

¢
.

6. CONCLUDING REMARKS

The proposed order-preserving nonparametric regression al-
gorithm provides a � rst solution to a problem that was pre-
viously not tractable, namely, to ensure that nonparametric
regression functionestimators respect order relationshipswithin
the responses, in the interior of the range of the covariate as
well as near or at endpoints of the range. We illustrate the
importance of the problem and the ef� cacy of the proposed
solution in the case of conditional distribution function es-
timation. Order-preserving estimation is here a prerequisite
for de� ning bona � de conditional distribution function esti-
mates.

The problem of crossing quantile estimators has been noted
and addressed before in linear regression models (He 1997).
A comprehensive solution as that given here has not previously
been provided. Further relevant applications include the con-
struction of prediction intervals for new observations that are
made near endpoints as well as the changepointproblem.

We have shown that no linear method, and this includesprac-
tically all commonly used nonparametric regression methods,
has the property of being order preserving on the whole do-
main of the predictor variable. The proposed nonlinear pro-
cedure works well and has been shown to possess attractive
asymptotic properties. Topics of interest for future research are
the development of other order-preserving nonparametric re-
gression methods and an investigation of asymptotic distribu-
tions.

[Received May 2002. Revised May 2003.]
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